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Equations of motion in linearised gravity: 
I1 Run-away sources 

P A Hogan and Mari Imaeda 
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, 
Dublin 4, Ireland 

Received 21 August 1978 

Abstract. Following an approach described in an earlier paper, we study the Robinson- 
Trautman fields in linearised gravity having run-away sources. We solve the linearised 
vacuum Einstein-Maxwell field equations when the run-away source in the background 
Minkowskian space-time is charged. Functions of integration are determined by the 
requirement that terms be excluded from the field of the particle which are singular on pairs 
of null-rays emanating into the future from events on the world-line of the particle in the 
background space-time. In contradistinction we show that, for an uncharged run-away 
source, one or other, but not both, of the ‘directional’ singularities which occur in the field of 
the particle can be removed. 

1. Introduction 

This paper is a sequel to the preceding paper (Hogan and Imaeda 1979a) which will 
hereafter be referred to as I. 

Since the Robinson-Trautman (1962) solutions of the Einstein and Einstein- 
Maxwell field equations closely resemble the LiCnard-Wiechert solutions of Maxwell’s 
equations, it is natural to examine whether the source of a Robinson-Trautman field 
can, in a technical sense, perform run-away motion. This type of motion is predicted by 
the Lorentz-Dirac equation of motion (see Synge 1965) of a point charge subject to its 
own electromagnetic field and in the absence of an external electromagnetic field. A 
similar type of motion has been suggested by Havas and Goldberg (1962) for a point 
mass moving in its own gravitational field. However, their linearised field for the 
particle is a retarded field which does not satisfy the Sommerfeld outgoing radiation 
conditions in the form given by Trautman (1958), and, as a consequence, they have 
radiation falling on the particle from infinity (see Hogan 1974a). 

In this paper we study in detail the electromagnetic and gravitational fields of a 
run-away charge in the linear approximation. Directional singularities, i.e. singularities 
along future null-rays emanating from events on the world-line of the particle, which 
arise in a natural way can be removed by choices of functions of integration. We 
conclude that the Robinson-Trautman solutions include the field of a run-away charged 
mass. On the other hand we show that the field of a run-away mass has an irremovable 
directional singularity, and hence the Robinson-Trautman solutions do not contain an 
acceptable field for a run-away mass. It may well be that there exists no acceptable 
solution of Einstein’s vacuum field equations describing the gravitational field of such a 
mass. 
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1062 P A Hogan and M Imaeda 

There has been some previous work, from a different point of view, on the run-away 
charge problem. This is mentioned in I together with a brief description of the 
distinction in approaches. 

The outline of the paper is as follows. In 0 2 we introduce the linearised Robinson- 
Trautman form of the Einstein-Maxwell vacuum field equations. This is accomplished 
by expanding quantities in a small parameter (the mass of the source, in a technical 
sense) from their Minkowskian values, and yields a line-element which is that of 
Minkowskian space-time plus a small first-order perturbation. The perturbation is 
singular on an unspecified time-like world-line in the background Minkowskian 
space-time. In Q 3 we specify this world-line to be the history of a run-away particle and 
solve the linearised field equations derived in the previous section. Finally, in § 4 we 
discuss briefly the case of a run-away mass. 

2. Linearisation 

Our starting point is the Robinson-Trautman form for the line-element, 

ds2 = 2r2P-2 d5 d5-2 dr da  - h da2 ,  (2.1) 

where r, (T are real coordinates, and 5, 5 are complex coordinates, the bar indicating 
complex conjugation. The function P is independent of r, but in general depends upon 
5, Sand a, while h is a function of all four coordinates. The corresponding electromag- 
netic four-potential is given by the one-form 

0 = -F da,  

where F is a function of all four coordinates. The vacuum Einstein-Maxwell field 
equations are satisfied by (2.1) and (2.2), provided (Robinson and Trautman 1962, 
Robinson 1973, private communication with P A Hogan) 

h = K - 2 H r - 2 M / r + e 2 / r 2 ,  F = e ( l / r -  w), ( 2 . 3 ~ )  

K = A l n P  (A = 2p2a2/aiar), (2.36) 

H = a(ln P)/av, ( 2 . 3 ~ )  

~ = m + 2 e ~ w ,  (2.3d) 

A W  = -2H, $AK=&f-3HM+e2N, (2.3e) 

N = 2P2(aw/ay)aw/aE (2.3f) 

where w = w(5, a), the ‘dot’ indicates differentiation with respect to (T, and we have 
chosen m and e to be constants. We will take m and e to be the mass and charge 
respectively of our linearised source. We shall assume that m and e’ are small of first 
order, writing? m = 01, e’ = 01, and expand P and w above in the form 

P=P(l+ Q) + 0 2 ,  
0 

( 2 . 4 ~ )  

t We choose units for which c = G = 1 and Gaussian units for which 4~ = 1 .  Hence we should have a 
parameter 1 (say), having the dimensions of length, so that ml-’ = O1 and e*l-* = O1. In the sequel the 
specialisation to a run-away source will involve a parameter 6 which is the acceleration of the source when 
U = 0. We would choose 1 = b - ’ .  
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where Q = O1 and 

w = w+ w + o z ,  (2.46) 
0 1  

with w = O1. Substituting these into (2.36), ( 2 . 3 ~ )  and (2 .3f)  yields 
1 

H = ?+?+ 0 2  ( 2 . 5 ~ )  

K = 5 + $ + 0 2 ,  (2.5b) 

N = N +  N +  0 2 ,  ( 2 . 5 ~ )  
0 1  

with 

K =  A In f, y= 2r(ay /ap)ay /ab;  (2.6) 
0 0  

F= a(ln g/au, 

where h = 2$2a2/aiaE while 
0 

$I= Q, ( 2 . 7 ~ )  

K = AQ + 2 5 Q ,  (2.7b) 

N =  4P[(aw/ay)aw/af+ (aw/af)al;u/ap + ~ ( a ~ / a p ) a y / a f ] .  0 ( 2 . 7 ~ )  

We shall assume that the subscript zero refers to the Minkowskian values of the 
quantities defined above. In I we have shown that when the Minkowskian line-element 
is written in the form (2.1) it is given explicitly by 

1 0  

1 0 0  1 0 

ds2 = 2 r 2 F 2  d l  df-  2 dr d u  - ( 1  - 2 p )  du2,  (2.8) 
0 

where 

P =  A 4( 1 + fir) - A 3(  1 - fir) - ( 3 / J i ) ( h  - i A  ') - (?/&)(A + iA *), ( 2 . 9 ~ )  

(2.96) 

The notation here is the same as in I. If X ' ,  i = 1, 2, 3 ,  4, are rectangular Cartesian 
coordinates and time in this background Minkowskian space-time, then r = 0 is a 
time-like world-line with equation X i  = x ' ( a ) .  Its tangent or four-velocity is A ' = 
dx'/du, and its four-acceleration is cc. ' = dA ' / d c  k' is tangent to the future-pointing 
generators of the null-cones at every event on r = 0 and is normalised so that Aik' = -1. 
For a detailed derivation of (2.8) and (2.9) the reader is refered to I. In this notation the 
LiCnard-Wiechert four-potential is given by (see Synge 1965) the one-form 

0 

H= a(ln P)/acr = -k'ki. 
0 0 

@ = (e/r)Ai dx'. (2.10) 
0 

Using the formulae (3.2) of I for differentiating retarded quantities, this can be written 

T = - e ( l / r + p i k i ) d a - d ( e  In r ) .  (2.11) 

The second term here can be removed by a gauge transformation, and thus an 
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equivalent form to (2.10) is 

a = - e ( l / r - w ) d a ,  
0 0 

With the values of f and w given above it is easy to see that 
0 

$In f =  1, Aw+2w=0. 
0 0  0 

( 2 . 1 2 ~ )  

(2.12 b )  

(2.13) 

The first of these implies that $appearing in (2.5b) and (2.6) is unity, while the second is 
the first of (2.3e) in zeroth order. The first-order perturbations in (2.5) are now 
calculated using (2.3e). These equations read 

$:=4QF- 2?+ 0 2 ,  (2.144) 

$AK= 2e2w-3H(m +2e2w)+ 0 2e2c(ay/aL)ay/af+O2. (2.146) 
0 1  0 0  

The procedure for solving these equations is as follows. We begin by specifying the 
time-like world-line r = 0 in the Minkowskian background space-time. Thence we 
know P, H a n d  w. These are substituted into the right-hand side of (2.146) and one 
solves for If. This value of $is used in (2.7b) to obtain Q. Knowing Q we determine y 
from ( 2 . 7 ~ ) .  These values of Q and y a r e  finally substituted into ( 2 . 1 4 ~ )  and one solves 
for w. The calculation is then complete, with the metric tensor and four-potential 
known with an O2 error, i.e. in the linear approximation. In carrying out this 
programme certain functions of integration will occur which are utilised to remove 
'directional' singularities in the linearised Weyl and Maxwell tensors. These singulari- 
ties, by their nature, are extraneous to the field of a simple pole particle. 

0 0  0 

1 

3. Run-away charge 

We specify the time-like world-line in the background Minkowskian space-time to 
have four-velocity components (Synge 1965) 

A = = 0 ,  A 3  = sinh[(b/a)(e"" - l)], A 4  = cosh[(b/a)(e"" - 111, (3.1) 

where b and a are constants. We shall find that a is positive, and thus, mindful of a 
singularity developing in the infinite future and the corresponding breakdown of the 
approximation, we confine our study to a future-bounded time interval - 03 < (T < u0 
for some small ao>O. The constant b is easily seen to be the value of the four- 
acceleration component p 3  when ( T = O .  The constant a, which will be determined 
later, occurs in the equation of motion, which is obtained from (3.1) to be 

p i  = (y-'(vi - p i p i h i ) ,  (3.2) 

where v i  = dg'/da. Equation (3.1) is the four-velocity of a particle accelerating to the 
speed of light (running away) as (T -* 00, if a > 0, along the X 3  axis. If (3.1) is substituted 
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into (2.9) we find 

P =  0 k l ( $ l f +  kg ) ,  H =  0 a t k f - k k : ) / t k f + k : ) ,  (3.3) 

k l  = A + A 4  = e", k2 = A -A4 = -evx, (3.4) 

where a = b e"", x = (b/a)(e"" - 1) and klk2 = -1 .  As we have already noted in I, for a 
particle moving along the X3 axis, from the ten Killing vectors of the Minkowskian 
background, the rotations about the X3 axis, generated by the vector field 

i ( ta /ay  - W a f ) ,  (3.5) 

have a special significance for the model we are constructing here. We again make the 
reasonable assumption that this symmetry be preserved in the linear approximation. 
This will be guaranteed if we henceforth require functions to depend on C and [in the 
combination &?as in (3.3). We find it more convenient, however, to introduce in place 
of lf the new variable 

The first equation to solve is (2.146). Written in terms of (and using (2.12b) and (3.3) it 
takes the form 0 

a[(l -f)aiY/a(]/ag= 12e2a2(1 - 3f)+4a(2e2a - 3m)5+ Oz. (3.7) 
0 0 0  0 0 

This can be integrated directly to give 

K =  6 e 2 a Z ~ - 2 a ( 2 e 2 a  -3m)f-A(u)  
1 0 0 

where A, C are functions of integration. At this stage it is useful to calculate the tetrad 
components of the linearised Weyl tensor and the linearised Maxwell tensor. A natural 
null-tetrad to use is given by the one-forms 

m, dx' = rP-' df; 6; dx' = rP-' dl ,  

k; dx = -du. (3.9) 1; dx '=  -&-I 2h du, 

However, one can simplify the resulting expressions for the tetrad components of the 
Weyl and Maxwell tensors, and, in fact, remove the dependence on w from them by 
using a tetrad related to (3.9) by a null-rotation (see Janis and Newman 1965). The 
specific null-rotation is 

k ' + k ' ,  m i  + mi + g k i ,  I' + I' + gf i  + @n + ggk' (3.10) 

1 

where 

g = ( g / P ) ( a  + a w / a 5 + a Q ) = u r l ~ ' + O l  (3.11) 

In terms of this new null-tetrad, and using the notation of Newman and Penrose (1962), 
the tetrad components of the Weyl and Maxwell tensors are given respectively by 

*o = 0 2 ,  (11 = 0 2 ,  ( 3 . 1 2 ~ )  

0 1 0  
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42 = -(1/r3)(m +2e2an+e2/r4+02,  (3.12b) 

(c13 = (1 /2r2) (~/ - /P) [aK/a&-6a(m + 2 e z a ~ l + 0 2  (3 .12~)  
0 

0 1 0  0 

4b4 = ( l / r  2 - 2  )([ /f2)($2$/a&-6e2a2) 
0 

+ ( l / r ) ( f l l ~ ) [ 2 a d K / a & - 6 a z ( m  + 2 e 2 a n - a ( a ~ / d & + 2 a Q ) / a & ] + 0 2 ,  0 0 

(3.12d) 

a0 = 0, (3.12e) 

1 0  0 

@l = -e/2r2 + 0 2 ,  @2 = 0 2 .  (3.12f) 

We note the following useful result: the transformation 

H+ Q +$A +B,  K + K + A  (3.13) 
1 1 1  

Q -+ Q + + N U )  +WU, n, 
0 

leaves (3.12) invariant provided B satisfies 

a(aB/a&+ 2aB)/a&= 0. (3.14) 
0 0 

Also the field equations (2.7a), (2.7b) and (2.146) are invariant under (3.13) provided 

+ B + 2 B = 0 .  (3.15) 

The field equation ( 2 . 1 4 ~ )  for is not left invariant by (3.13), but since ';" does not 
appear in (3.12) we have the result that (3.13) subject to (3.14) and (3.15) constitutes a 
gauge transformation. 

On substituting the expression (3.8) for F i n t o  $3 in (3 .12~)  we find 

* '3=(1 /2r2) (~ /~{-4e2aa  +[c+2a(2e2a  -3m)l(1-&-')+02. (3.16) 

This expression is not only singular at r = 0, but is also singular at &= *l. On account of 
(2.9b), (3.3) and (3.6), &= *1 corresponds to 

0 0 

0 

0 

piki  = *b eau. (3.17) 

Thus for each constant value of U, i.e. on each future null-cone with vertex on r = 0, 
(3.17) picks out a pair of diametrically opposed future-pointing null-rays or generators, 
k', on which the field component (3.16) is singular. We exclude this singularity from 
(3.16), since the field of a simple pole particle should only be singular on r = 0, by 
choosing 

c = -2a(2e2a -3m). (3.18) 

Making this substitution in $we pass to (2.7b). In terms of the variable & this reads 
0 

d[( l  -&aQ/aO]/a[+2Q = 6e2a2t2+ C t - A  +02. (3.19) 
0 0 0  0 0 
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Integrating by a standard technique (see Bateman 1918) we obtain 

Q = z e  3 2 2  a ( l - ~ ) - ~ C f I n ( l - f ) - $ f A - B ( u , & ) + O ~ ,  
0 0 0 0 

B(c ,  &) = P(g)Pi(&) + r (g)Q1(0,  (3.20) 

where p, y are functions of integration, and Pl(&), Ql(# are 1 = 1 Legendre functions of 

the first and second kind. From this one calculates H in ( 2 . 7 ~ )  using i= a ( 1  - f 2 ) ,  

d = aa and, on account of (3.18), C = aC. We then calculate $4 from (3 .12d)  to find 

0 0 0 

0 0 

1 0 0 

g4 = ( l / r ) ( f 2 / P z ) { a C  - 6 m a 2 + 6 e 2 a 2 a  + [ 2 j - $ a C f ( 3 - f 2 ) ] ( 1  -22)-2+O~.  (3.21) 
0 0  0 0 

The final term here is non-singular at f =  * l  only if y = yo, a constant, and C = 0. The 
latter is a remarkable result, for if we return to (3.18) we find that we have determined a 
to be 

a = 3m/2e2 ,  (3.22) 

and the equation of run-away motion (3 .2)  must be precisely the Lorentz-Dirac 
equation (see Synge 1965). 

The non-vanishing (modulo an 0 2  error) tetrad components of the Weyl and 
Maxwell tensors are finally given by 

0 

(c12 = - ( 1 / r 3 ) ( m  + 2e2a[) + e 2 / r 4  +02, 

$4 = ( 3 m a 2 / r ) l Z / f 2 +  02, @ I =  -e /2r2 + oz. (3.23) 

g3 = - ( 3 m a / r 2 ) f / r + 0 2 ,  
0 

The function Q in ( 2 . 4 ~ )  is given by (3.20) with C=O, K by (3 .8)  without the 

logarithmic term, and $Z by d. We could then obtain from (2 .14a) ,  but it does not 

contribute to the metric or the field in the linear approximation. The linearised Weyl 
tensor is Petrov type 11, while the Maxwell tensor is algebraically general. We notice 
that the functions of integration A, p, yo remaining in Q, H, K d o  not appear in (3.23).  

It is not surprising then that they can be removed by a gauge transformation. The 
relevant gauge transformation is given by (3.13).  The condition (3.14) reduces to j = 0 
for B(u, Q given by (3.20),  while this value for B(u, &) clearly satisfies (3.15).  

The quantities (3.23) are all non-singular on [= * l .  They are singular on r = 0. We 
note that -wCg<u0,  so that the singularity in the limit u + w  is not allowed to 
develop. As U +  --CO the fields (3.23) become the linearised gravitational and electric 
fields of a static charge, i.e. the Reissner-Nordstrom solution in the linear approxima- 
tion. 

1 

1 1  

0 0 

0 

4. Discussion 

The final form for the line-element of a run-away charged mass in the linear approxi- 
mation is given by (2 .1) ,  ( 2 . 3 ~ )  and (2 .3d)  with 
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3 2 2  P = -2k2(1 - a - ' [ 1 +  ze a (a  - 811 + 0 2 ,  

H = a[+%ma2(1 - 8) -3e2a3K1 -8) + 0 2 ,  

K = 1 + 6 e 2 a 2 8  + 02, 

0 0 

0 0 0 0  

M = m + 2e2a[+ OZ. 
0 0 

[is given by (3.6),  k2 by (3 .4) ,  and a = b e"", where -CO < (T < no. The four-potential is 

given by (2.12) with sufficient accuracy. 
It should be noted that, having determined the constant a in the run-away equation 

of motion (3.2) to have the value stated in (3.22), we arrive at the Lorentz-Dirac 
equation of motion without an infinite self-energy term (see e.g. Hogan 1974b). 

If we take as source, in the background Minkowskian space-time, a rua-away 
uncharged mass, then solving equations (2.3) with e = 0, in the manner described in I, 
one finds that the tetrad components of the linearised Riemann tensor are now (using 
(3.12) with e = 0) 

0 

(4 .2)  

with a = b eau as in (3 .3)  and 

S =2ma(u[(1-62)+4maa6-2j((+),  0 0 (4 .3)  

where +(U) is the derivative of a function of integration. This situation is quite different 
from the case of the run-away charged mass discussed in 0 3 ,  for if one chooses 
y = 2maa in (4.3) one removes the singularity in 4b4 at e= +1, while if one chooses 

y = -2maa in (4.3) one removes the singularity in $4 at [= -1. The value of a is left 

undetermined. Hence one has an irremovable 'directional' singularity in the linearised 
field of a run-away uncharged mass. We therefore conclude that the Robinson- 
Trautman family of solutions does not contain an acceptable solution describing the 
field of a run-away neutral mass, in complete contrast to the case of a run-away charged 
mass. 

It is well-known within the Lorentz covariant framework of classical elec- 
trodynamics that a charged particle undergoing self-interaction will perform run-away 
motion (cf Synge 1965). We have an example of this here in the linearised Einstein- 
Maxwell theory. There is no external field. As we have pointed out in I, the need for an 
external field to drive the particle is thought to manifest itself in the occurrence of 
conical singularities in the two-surfaces r = constant, LT = constant. In the case dis- 
cussed in the present paper one can show that no such singularities occur (this is 
examined in the following paper (Hogan and Imaeda 1979b)). 

0 

0 
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